第一單元 觀察物體
1、長方體(或正方體)放在桌子上,從不同角度觀察,一次最多能看到3個面(或說成:最多同時能看到3個面)。
2、給出一個(或兩個)方向觀察的圖形無法確定立體圖形的形狀。 由三個方向觀察到的圖形就可以確定立體圖形的形狀并還原立體圖形。
3、從一個方向看到的圖形擺立體圖形,有多種擺法。
4、從多個角度觀察立體圖形
先根據平面圖分析出要拼搭的立體圖形有幾層;
然后確定要拼搭的立體圖形有幾排;
最后根據平面圖形確定每層和每排的小正方體的個數。
第二單元 因數和倍數
1、整除:被除數、除數和商都是自然數,并且沒有余數。
大數能被小數整除時,大數是小數的倍數,小數是大數的因數。
一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。
一個數的倍數的個數是無限的,最小的倍數是它本身。
2、自然數按能不能被2整除來分:奇數 偶數
奇數:不是2的倍數的數
偶數:是2的倍數的數。 最小的奇數是1,最小的偶數是0.
個位上是0,2,4,6,8的數都是2的倍數。
個位上是0或5的數,是5的倍數。
一個數各位上的數的和是3的倍數,這個數就是3的倍數。
能同時被2、3、5整除的最大的兩位數是90,最小的三位數是120。
3、自然數按因數的個數來分:質數、合數、1.
質數:有且只有兩個因數,1和它本身
合數:至少有三個因數,1、它本身、別的因數
1: 只有1個因數。“1”既不是質數,也不是合數。
最小的質數是2,最小的合數是4。
20以內的質數:有8個(2、3、5、7、11、13、17、19)
100以內的質數:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97
4、公因數、最大公因數
幾個數公有的因數叫這些數的公因數。其中最大的那個就叫它們的最大公因數。
用短除法求兩個數或三個數的最大公因數 (除到互質為止,把所有的除數連乘起來)
幾個數的公因數只有1,就說這幾個數互質。
兩數互質的特殊情況:
⑴1和任何自然數互質;⑵相鄰兩個自然數互質; ⑶兩個質數一定互質;
⑷2和所有奇數互質; ⑸質數與比它小的合數互質;
如果兩數是倍數關系時,那么較小的數就是它們的最大公因數。
如果兩數互質時,那么1就是它們的最大公因數。
5、公倍數、最小公倍數
幾個數公有的倍數叫這些數的公倍數。其中最小的那個就叫它們的最小公倍數。
用短除法求兩個數的最小公倍數(除到互質為止,把所有的除數和商連乘起來)
如果兩數是倍數關系時,那么較大的數就是它們的最小公倍數。
如果兩數互質時,那么它們的積就是它們的最小公倍數。
第三單元 長方體和正方體
【概念】
1、由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫做長方體。在一個長方體中,相對面完全相同,相對的棱長度相等。
2、兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
3、由6個完全相同的正方形圍成的立體圖形叫做正方體(也叫做立方體)。正方體有12條棱,它們的長度都相等,所有的面都完全相同。
4、長方體和正方體的面、棱和頂點的數目都一樣,只是正方體的棱長都相等,正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。
5、長方體有6個面,8個頂點,12條棱,相對的面的面積相等,相對的棱的長度相等。一個長方體最多有6個面是長方形,最少有4個面是長方形,最多有2個面是正方形。正方體有6個面,每個面都是正方形,每個面的面積都相等,有12條棱,每條的棱的長度都相等。
長方體的棱長總和=(長+寬+高)×4 L=(a+b+h)×4
長=棱長總和÷4-寬 -高 a=L÷4-b-h
寬=棱長總和÷4-長 -高 b=L÷4-a-h
高=棱長總和÷4-長 -寬 h=L÷4-a-b
正方體的棱長總和=棱長×12 L=a×12
正方體的棱長=棱長總和÷12 a=L÷12
6、長方體或正方體6個面和總面積叫做它的表面積。
長方體的表面積=(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
如需下載完整版可以掃描下方二維碼即可免費獲取小學五年級下冊數學復習提綱電子版↓↓↓
還沒有人評論哦,趕緊搶一個沙發吧!